

## **MQHE-270-P**

## **Passive Filter**

## HIGH RELIABILITY EMI FILTER

-400V to +400V
Continuous Input

1A
Output Current

450mΩ @ 125°C

Max. DC Resistance

>50dB @ 500kHz
Differential Attenuation

FULL POWER OPERATION: -55°C to +125°C

The MilQor® series of high-reliability EMI filters brings SynQor's field proven technology and manufacturing expertise to the Military/Aerospace industry. SynQor's innovative QorSeal® packaging approach ensures survivability in the most hostile environments. Compatible with the industry standard format, these filters have high differential-mode and common-mode attenuation, low DC resistance, and a stabilizing bulk capacitor resistor. They follow conservative component derating guidelines and they are designed and manufactured to comply with a wide range of military standards.





DESIGNED & MANUFACTURED IN THE USA FEATURING QORSEAL® HI-REL ASSEMBLY

## **Design Process**

MQHE series filters are:

- Designed for reliability per NAVSO-P3641-A guidelines
- Designed with components derated per:
  - MIL-HDBK-1547A
  - NAVSO P-3641A

## **Qualification Process**

MQHE series filters are qualified to:

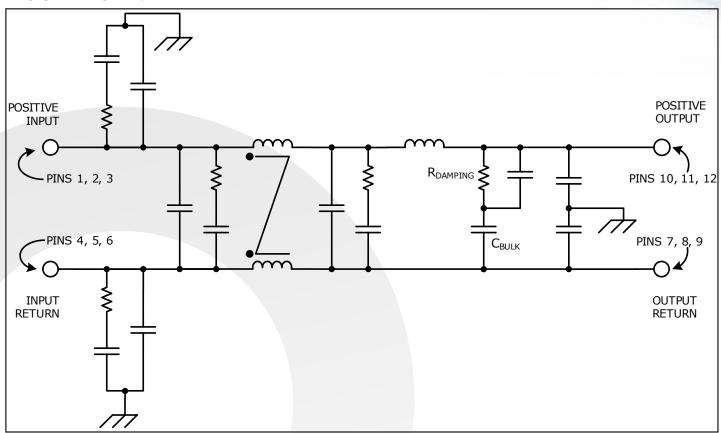
- MIL-STD-810F
  - consistent with RTCA/DO-160E
- SynQor's First Article Qualification
  - consistent with MIL-STD-883F
- SynQor's Long-Term Storage Survivability Qualification
- SynQor's on-going life test

## **In-Line Manufacturing Process**

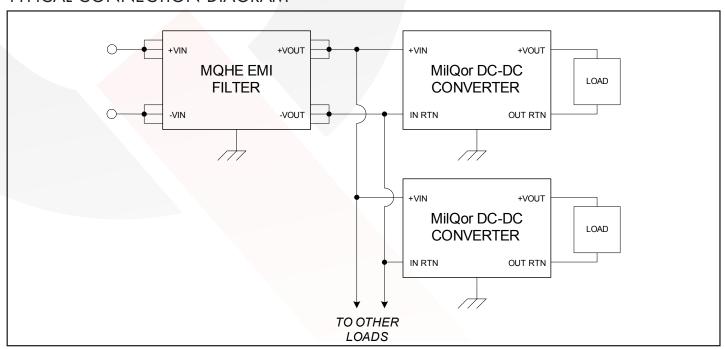
- AS9100 and ISO 9001 Certified Facility
- Full component traceability
- Temperature cycling
- Constant acceleration
- 24, 96, 160 hour burn-in
- Three level temperature screening

## **Features**

- 1 amps output current
- Very low DC resistance
- > 50 dB differential-mode attenuation at 500kHz
- > 60 dB common-mode attenuation at 500kHz
- Stabilizing bulk capacitor and damping resistor included
- All capacitors are X7R multi-layer ceramic
- Designed to meet all MIL-STD 461 EMI and most RTCA/DO-160E Section 22 lightning requirements


## **Specification Compliance**

MQHE filters (with MQFL converters) are designed to meet:


- MIL-HDBK-704-7 (A through F)
- RTCA/DO-160 Section 16
- MIL-STD-461 (C, D, E, F)
- RTCA/DO-160 Section 22



## **BLOCK DIAGRAM**



## TYPICAL CONNECTION DIAGRAM



## **MQHE-270-P ELECTRICAL CHARACTERISTICS**

| Parameter                                                      | Min.   | Тур.       | Max.     | Units                | Notes & Conditions                                            | Group A                  |
|----------------------------------------------------------------|--------|------------|----------|----------------------|---------------------------------------------------------------|--------------------------|
| Specifications subject to change without notice                |        |            |          |                      | Vin = 270V DC $\pm 5\%$ , P = 160W unless otherwise specified | Subgroup<br>(See Note 3) |
| ABSOLUTE MAXIMUM RATINGS                                       |        |            |          |                      |                                                               |                          |
| Input Voltage                                                  |        |            |          |                      | See Note 1                                                    |                          |
| Continuous                                                     | -550   |            | 550      | V                    |                                                               |                          |
| Transient (≤1 s)                                               | -550   |            | 550      | V                    |                                                               |                          |
| Isolation Voltage (Input/Output to case)                       |        |            |          |                      |                                                               |                          |
| Continuous                                                     | -500   |            | 500      | V                    |                                                               |                          |
| Transient (≤1 s)                                               | -1000  |            | 1000     | V                    |                                                               |                          |
| Output Current                                                 |        |            | 1        | Α                    |                                                               |                          |
| Operating Case Temperature                                     | -55    |            | 125      | °C                   | HB Grade Products, See Note 5                                 |                          |
| Storage Case Temperature                                       | -65    |            | 135      | °C                   |                                                               |                          |
| Lead Temperature (20 s)                                        |        |            | 300      | °C                   |                                                               |                          |
| ELECTRICAL CHARACTERISTICS                                     |        |            |          |                      |                                                               |                          |
| Input Voltage                                                  |        |            |          |                      | See Note 1                                                    |                          |
| Continuous                                                     | -400   |            | 400      | V                    |                                                               | 1, 2, 3                  |
| Transient ( $\leq 1$ s, Rs* = 0 $\Omega$ )                     | -500   |            | 500      | V                    |                                                               |                          |
| Transient ( $\leq 100$ ms, Rs* = 0 $\Omega$ )                  | -500   |            | 500      | V                    |                                                               |                          |
| Output Voltage (continuous)                                    | Vout = | Vin - (Iii | n x Rdc) | V                    |                                                               | 1, 2, 3                  |
| Output Current (continuous)                                    |        |            | 1        | Α                    |                                                               | 1, 2, 3                  |
| Power (continuous)                                             |        |            | 160      | W                    | See Note 4                                                    |                          |
| DC Resistance RDC                                              |        |            |          |                      |                                                               |                          |
| Tcase = 25°C                                                   |        |            | 0.35     | Ω                    |                                                               | 1                        |
| Tcase = 125°C                                                  |        |            | 0.45     | Ω                    |                                                               | 3                        |
| Power Dissipation (1A output current)                          |        |            |          |                      |                                                               |                          |
| Tcase = 25°C                                                   |        |            | 0.35     | W                    |                                                               | 1                        |
| Tcase = 125°C                                                  |        |            | 0.45     | W                    |                                                               | 3                        |
| Total Differential-Mode Capacitance                            |        | 0.66       |          | μF                   | Measured across input or output pins                          |                          |
| Total Common-Mode Capacitance                                  |        | 0.28       |          | μF                   | Measured between any pin to case                              |                          |
| Bulk Capacitor                                                 |        | 0.53       |          | μF                   |                                                               |                          |
| Damping Resistor                                               |        | 15         |          | Ω                    |                                                               |                          |
| Noise Attenuation                                              |        |            |          |                      | See Figure 1                                                  |                          |
| INPUT VOLTAGE SPIKE SUPPRESSION                                |        |            |          |                      |                                                               |                          |
| Output Voltage Deviation due to a Spike                        |        |            |          |                      | See Note 2                                                    |                          |
| Input Voltage Spike (Centered on Vin)                          |        |            |          |                      |                                                               |                          |
| $\pm 200$ V, 10μs, Rs $\leq 0.5\Omega$ ,   Q   $\leq 250\mu$ C | -50    |            | 150      | ΔV                   | MIL-STD-461C (CS06)                                           |                          |
| $\pm$ 400V, 5μs, Rs ≤ 0.5Ω,   Q   ≤ 250μC                      | -50    |            | 150      | ΔV                   | MIL-STD-461C (CS06)                                           |                          |
| $\pm 600$ V, 10μs, Rs = $50$ Ω                                 | -50    |            | 150      | ΔV                   | RTCA/DO-160E                                                  |                          |
| ISOLATION CHARACTERISTICS                                      |        |            |          |                      |                                                               |                          |
| Isolation Voltage (any pin to case)                            |        |            |          |                      |                                                               |                          |
| Continuous                                                     | -500   |            | 500      | V                    |                                                               | 1                        |
| Transient (≤ 100 µs)                                           | -800   |            | 800      | V                    |                                                               |                          |
| Isolation Resistance (any pin to case)                         | 100    |            |          | ΜΩ                   |                                                               | 1                        |
| RELIABILITY CHARACTERISTICS                                    |        |            |          |                      |                                                               |                          |
| Calculated MTBF (MIL-STD-217F2)                                |        |            |          |                      |                                                               |                          |
| GB @ Tcase = 70°C                                              |        | 222        |          | 10 <sup>6</sup> Hrs. |                                                               |                          |
| AIF @ Tcase = 70°C                                             |        | 14.7       |          | 10 <sup>6</sup> Hrs. |                                                               |                          |
| WEIGHT CHARACTERISTICS                                         |        | 1 T./      |          | 10 1113.             |                                                               |                          |
|                                                                |        | ΛE         |          |                      |                                                               |                          |
| Device Weight                                                  |        | 45         |          | g                    |                                                               |                          |

## **Electrical Characteristics Notes**

- 1. While the filter will survive these input voltage limits, the filter's output voltage will be outside the limits for an MQFL converter input voltage range.
- 2. By similarity to the qualification testing and analysis of the MQME-270-P filter.
- 3. Only the ES and HB grade products are tested at three temperatures. The C grade products are tested at one temperature. Please refer to the Construction and Environmental Stress Screening Options table for details.
- 4. Product of input current and output voltage must be less than 160W
- 5. The specified operating case temperature for ES grade products is -45°C to 100°C. The specified operating case temperature for C grade products is 0°C to

\* Rs = Source Impedance



# **MQHE-270-P**

**Current: 1.0A** 

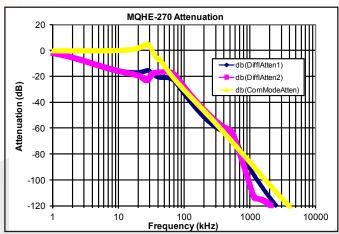



Figure 1: Simulation of calculated common-mode and differential-mode current attenuation. The curves plot the ratio of noise current in a  $50\Omega$  LISN sensing port connected to the noise output side of the filter to the noise current on the input side. The filter case is also connected to chassis ground. Refer to Figures A and B.

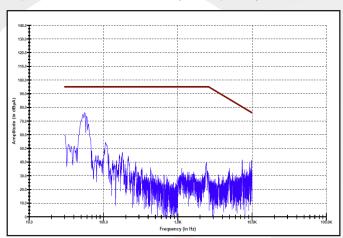



Figure 3: MIL-STD-461E Method CE101 Low Frequency Conducted Emissions of the MQME-270-P filter with a MQFL-270-05S at 120W output. Limit line (in brown) is the 'Submarine Applications DC Curve'.

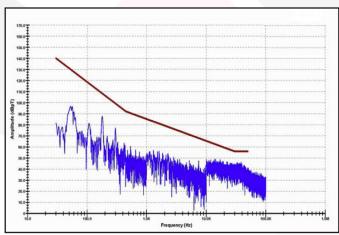



Figure 5: MIL-STD-461E Method RE101 Low Frequency Radiated Emissions of the MQME-270-P filter with a MQFL-270-05S at 120W output. Limit line (in brown) is the 'Standard Curve' from MIL-STD-461C Method RE01, which is more strict than all RE101 limits.

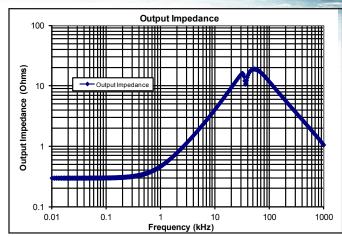



Figure 2: Calculated Output Impedance (magnitude) of the filter looking back into its output pins with the input pins connected to a source with zero source impedance assuming no other parasitic coupling in the system.

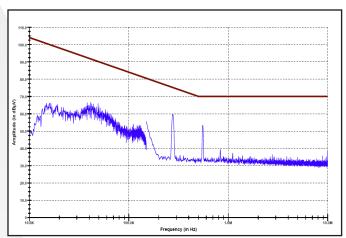



Figure 4: MIL-STD-461E Method CE102 High Frequency Conducted Emissions of the MQME-270-P filter with a MQFL-270-05S at 120W output. Limit line (in brown) is the 'Basic Curve'.

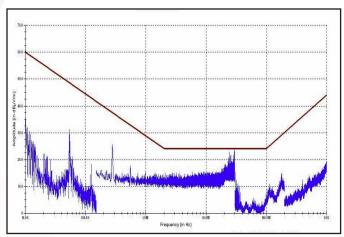



Figure 6: MIL-STD-461E Method RE102 High Frequency Radiated Emissions of the MQME-270-P filter with a MQFL-270-05S at 120W output. Limit line (in brown) is the 'Submarine External to Pressure Hull Curve'.

## BASIC OPERATION AND FEATURES

The MQHE-270-P is a multi-stage differential-mode and common-mode passive EMI filter designed to interface a power source with one or more SynQor DC/DC converters (or other loads that create EMI). Each stage of this filter is well damped to avoid resonances and oscillations, and only X7R multi-layer ceramic capacitors are used. Figure 1 shows the typical differential and common-mode attenuation provided by this filter when the source impedance is  $50\Omega$  to chassis ground on each input line.

The MQHE-270-P EMI filter includes a large bulk capacitor (also X7R) with a series damping resistor to correct for the unstabilizing effect of a converter's negative input resistance. A white paper discussing this negative input resistance and the need for corrective damping can be found on the SynQor website (see Input System Instability application note). Figure 2 shows the magnitude of the filter's output impedance when the filter input is connected to a stiff voltage source.

**Additional Damping Requirements:** The MQHE-270-P will require an additional external damping network for some MQFL-270 converters. Consult the input impedance figure on the converter's datasheet and the filter's bulk capacitance and damping resistance in the specification table. With these values, the additional damping network can be calculated using the Input System Instability application note.

When used with SynQor's DC/DC converters, the MQHE-270-P EMI filter is designed to pass all of the relevant MIL-STD-461C/D/E/F requirements to their most stringent limits. The MIL-STD-461 Compliance Matrix Table on Page 7 lists these requirements and describes the setup used to pass them. Figures 3 - 6 show results from selected conductive and radiated emissions tests.

The filter is also designed to pass the waveform types and applications specified in RTCA/DO-160E Section 22 (Lightning Induced Transient Susceptibility) to Level 4 (some waveforms/applications require external transient suppression circuitry). The Section 22 Compliance Matrix Table on Page 6 lists these waveforms and applications and describes the setup used to pass them.

A typical application would place the MilQor filter close to the input of the DC/DC converter, with the cases of the filter and the converter connected together through a ground plane. Both cases are electrically conductive, so connection to the cases can be made with the fasteners used to secure the device.

Do not connect the outputs of multiple MQHE-270-P filters in parallel. Connecting filters in this manner may result in slightly unequal currents to flow in the positive and return paths of each filter. These unequal currents may cause the internal common-mode chokes to saturate and thus cause degraded common-mode rejection performance.

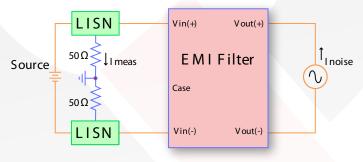



Figure A: Differential-Mode Current Attenuation, Imeas / Inoise

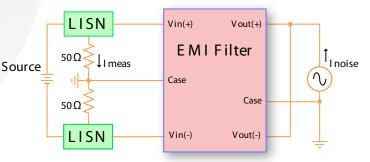



Figure B: Common-Mode Current Attenuation, Imeas / Inoise

## MIL-STD-461 COMPLIANCE MATRIX

This table shows the MIL-STD-461 requirements/limits that have been met\* by a stand-alone setup comprised of:

- MQME-270-P Filter
- MQFL-270-05S DC/DC Converter
- Resistive Load
- Metal Chassis Plane

|                            |                      | -461C                                                                         | -46             | ID/E/F                                   |
|----------------------------|----------------------|-------------------------------------------------------------------------------|-----------------|------------------------------------------|
|                            | Requirement          | Most Stringent Limit<br>Listed                                                | Requirement     | Most Stringent<br>Limit Listed           |
| Conducted<br>Emissions     | CE01<br>CE03<br>CE07 | Class A5 (Submarine)<br>Class A5 (Submarine)<br>Class A1 (Aircraft)           | CE101<br>CE102  | Submarine<br>Basic Curve                 |
|                            | CS01                 | Class A5 (Submarine)                                                          | C\$101          | Curve #2                                 |
| Conducted                  | CS02                 | Class A5 (Submarine)                                                          | CS106           | (461F Only)                              |
| Susceptibility             | CS06                 | Class A1/A5 (Aircraft/Sub)                                                    | CS114           | Curve #5                                 |
| ососорнышу                 | CS10<br>CS11         | Class A5 (Submarine)<br>Class A5 (Submarine)                                  | CS115<br>CS116  | Basic Waveform<br>I <sub>MAX</sub> = 10A |
| Radiated<br>Emissions      | REO1<br>REO2†        | Class A5 (Submarine)<br>Class A5 (Submarine)                                  | RE101<br>RE102† | Navy<br>Submarine                        |
| Radiated<br>Susceptibility | RSO1<br>RSO2<br>RSO3 | Class A5 (Submarine)<br>Class A1/A5 (Aircraft/Sub)<br>Class A4 (Surface Ship) | RS101<br>RS103  | Army<br>Aircraft External                |

Met by any MQME/MQHE Filter

Met by an MQME Filter having the Transient Suppression and Reverse Polarity Protection Features

† Met with metal screen shield covering the filter, converter, and resistive load.

<sup>\*</sup> Susceptibility requirements/limits are deemed to have been met as long as transient deviations in the converter's output voltage remain within ±10% of its initial value.

# RTCA/DO-160E SECTION 22 COMPLIANCE MATRIX (LIGHTNING INDUCED TRANSIENT SUSCEPTIBILITY)

The following table shows the RTCA/DO-160 Section 22 requirements that have been met\* by a stand-alone setup comprised of:

- MQME-270-P Filter
- MQFL-270-05S DC/DC Converter
- Resistive Load
- Metal Chassis Plane
- Unshielded Power Cable Bundle

|                                     | Waveform | Maximum Level Passed  | Test Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-------------------------------------|----------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                     | 3        | 4                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Pin Injection                       | 4        | <b>4</b> <sup>†</sup> | Signal applied to +Vin pin. Input Re<br>turn pin connected to system ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                     | 5a       | <b>4</b> <sup>†</sup> | ion più comecica ie cyciem greena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Single- and                         | 2        | 4**                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Multiple-Stroke<br>Cable Induction  | 3        | 4                     | Signal applied to unshielded power cable bundle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Single- and                         | 4        | 4                     | C'and and all the control of the con |  |
| Multiple-Stroke<br>Ground Injection | 5a       | 4                     | Signal applied between metal ground plane and system ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Multiple-Burst<br>Cable Induction   | 3        | 4                     | Signal applied to unshielded power cable bundle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

Met by an MQME Filter Met by an MQME Filter having the Transient Suppression and Reverse Polarity Protection Features

- \* Requirement is deemed to have been met as long as transient deviations in the converter's output voltage remain within ±10% of its initial value.
- † For these waveforms at Level 3 and above, an external transient suppressor of sufficient energy rating must placed across the filter's input pins to keep the differential transient input voltage below +200V/-50V. Negative polarity waveforms may cause power flow to the converter to be interrupted long enough to cause a graceful shutdown and restart of the converter. Also, the reverse voltage protection feature of the -T filter is required to protect the converter (but not the filter) from negative polarity waveform.
- \*\* For this waveform at a Level 4 and above, external transient suppressors of sufficient energy rating must be added between the filter's input power pins and its case to keep the common-mode transient input voltage below ±800V.

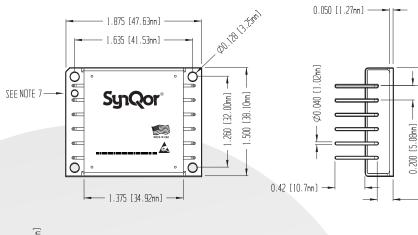
## CONSTRUCTION AND ENVIRONMENTAL STRESS SCREENING OPTIONS

| Screening                                     | Consistent with<br>MIL-STD-883F | C-Grade<br>( specified from<br>0 °C to +70 °C ) | ES-Grade<br>( specified from<br>(-45 °C to +100 °C ) | HB-Grade<br>( specified from<br>(-55 °C to +125 °C ) |
|-----------------------------------------------|---------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Element Evaluation                            |                                 | No                                              | Yes                                                  | Yes                                                  |
| Internal Visual                               | IPC-A-610 Class 3               | Yes                                             | Yes                                                  | Yes                                                  |
| Temperature Cycle                             | Method 1010                     | No                                              | Condition B<br>(-55 °C to +125 °C)                   | Condition C<br>(-65 °C to +150 °C)                   |
| Constant Acceleration                         | Method 2001<br>(Y1 Direction)   | No                                              | 500 g                                                | Condition A<br>(5000 g)                              |
| Burn-in                                       | Method 1015                     | 24 Hrs @ +125 °C                                | 96 Hrs @ +125 °C                                     | 160 Hrs @ +125 °C                                    |
| Final Electrical Test                         | Method 5005 (Group A)           | +25 °C                                          | -45, +25, +100 °C                                    | -55, +25, +125 °C                                    |
| Mechanical Seal, Thermal, and Coating Process |                                 |                                                 | Full QorSeal                                         | Full QorSeal                                         |
| External Visual                               | Method 2009                     | Yes                                             | Yes                                                  | Yes                                                  |
| Construction Process                          |                                 |                                                 | QorSeal                                              | QorSeal                                              |

MilQor® Hi-Rel converters and filters are offered in three variations of environmental stress screening options. All ES-Grade and HB-Grade MilQor Hi-Rel converters use SynQor's proprietary QorSeal® Hi-Rel assembly process that includes a Parylene-C coating of the circuit, a high performance thermal compound filler, and a nickel barrier gold plated aluminum case. Each successively higher grade has more stringent mechanical and electrical testing, as well as a longer burn-in cycle. The ES- and HB-Grades are also constructed of components that have been procured through an element evaluation process that pre-qualifies each new batch of devices.

## **MIL-STD-810F Qualification Testing**

| MIL-STD-810F Test          | Method                  | Description                                                                     |  |  |
|----------------------------|-------------------------|---------------------------------------------------------------------------------|--|--|
| Fungus                     | 508.5                   | Table 508.5-I                                                                   |  |  |
| Altitudo                   | 500.4 - Procedure I     | Storage: 70,000 ft / 2 hr duration                                              |  |  |
| Altitude                   | 500.4 - Procedure II    | Operating: 70,000 ft / 2 hr duration; Ambient Temperature                       |  |  |
| <b>Rapid Decompression</b> | 500.4 - Procedure III   | Storage: 8,000 ft to 40,000 ft                                                  |  |  |
| Acceleration               | 513.5 - Procedure II    | Operating: 15 g                                                                 |  |  |
| Salt Fog                   | 509.4                   | Storage                                                                         |  |  |
| High Tomporature           | 501.4 - Procedure I     | Storage: 135 °C / 3 hrs                                                         |  |  |
| High Temperature           | 501.4 - Procedure II    | Operating: 100 °C / 3 hrs                                                       |  |  |
| Low Tomporature            | 502.4 - Procedure I     | Storage: -65 °C / 4 hrs                                                         |  |  |
| Low Temperature            | 502.4 - Procedure II    | Operating: -55 °C / 3 hrs                                                       |  |  |
| Temperature Shock          | 503.4 - Procedure I - C | Storage: -65 °C to 135 °C; 12 cycles                                            |  |  |
| Rain                       | 506.4 - Procedure I     | Wind Blown Rain                                                                 |  |  |
| Immersion                  | 512.4 - Procedure I     | Non-Operating                                                                   |  |  |
|                            |                         | Aggravated cycle @ 95% RH (Figure 507.5-7 aggravated temp -                     |  |  |
| Humidity                   | 507.4 - Procedure II    | humidity cycle, 15 cycles)                                                      |  |  |
| Random Vibration           | 514.5 - Procedure I     | 10 - 2000 Hz, PSD level of 1.5 $g^2/Hz$ (54.6 $g_{rms}$ ), duration = 1 hr/axis |  |  |
| Shock                      | 516.5 - Procedure I     | 20 g peak, 11 ms, Functional Shock (Operating no load) (saw tooth)              |  |  |
| SHOCK                      | 516.5 - Procedure VI    | Bench Handling Shock                                                            |  |  |
| Sinusoidal vibration       | 514.5 - Category 14     | Rotary wing aircraft - helicopter, 4 hrs/axis, 20 g (sine sweep from            |  |  |
| Siliusuludi Vibration      | 314.3 - Calegory 14     | 10 - 500 Hz)                                                                    |  |  |
| Sand and Dust              | 510.4 - Procedure I     | Blowing Dust                                                                    |  |  |
| Saliu aliu Dust            | 510.4 - Procedure II    | Blowing Sand                                                                    |  |  |

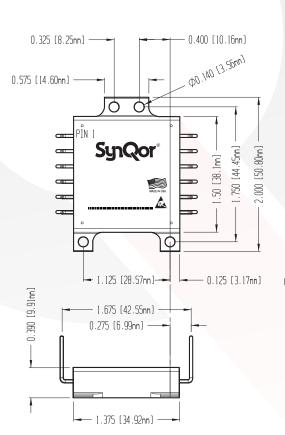

## First Article Testing consistent with MIL-STD-883F

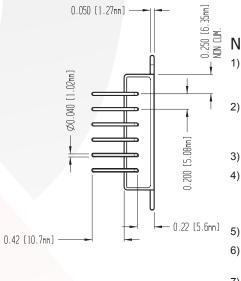
| MIL-STD-883F Test                  | Method  | Description      |
|------------------------------------|---------|------------------|
| Electrical Tests                   | 5005    |                  |
| Physical Dimensions test           | 2016    |                  |
| Resistance to Solvents test        | 2015.13 |                  |
| Solderability test                 | 2003.8  |                  |
| Lead Integrity test                | 2004.5  |                  |
| Salt Atmosphere test               | 1009.8  | Condition "A"    |
| Adhesion of Lead Finish test       | 2025.4  |                  |
| Altitude Operation test            | 1001    | Condition "C"    |
| ESD Sensitivity                    | 3015.7  | Class 2          |
| Stabilization Bake test            | 1008.2  | Condition "C"    |
| Vibration Fatigue test             | 2005.2  | Condition "A"    |
| Random Vibration test              | 2026    | Condition "II K" |
| Sequential Test Group #1           |         |                  |
| Life Test – Steady State test      | 1005.8  |                  |
| Life Test – Intermittent Duty test | 1006    |                  |
| Sequential Test Group #2           |         |                  |
| Temperature Cycle test             | 1010.8  | Condition "C"    |
| Constant Acceleration test         | 2001.2  | Condition "A"    |
| Sequential Test Group #3           |         |                  |
| Thermal Shock test                 | 1011.9  | Condition "B"    |
| Temperature Cycle test             | 1010.8  | Condition "C"    |
| Moisture Resistance test           | 1004.7  | With Sub cycle   |
| Sequential Test Group #4           |         |                  |
| Mechanical Shock test              | 2002.4  | Condition "B"    |
| Variable Frequency Vibration test  | 2007.3  | Condition "A"    |



0.250 [6.35m]

- 0.22 [5.6mm]





# 1.68 [42.7nn]

Case U

## PIN DESIGNATIONS

| Pin # | Function        |
|-------|-----------------|
| 1     | Positive input  |
| 2     | Positive input  |
| 3     | Positive input  |
| 4     | Input return    |
| 5     | Input return    |
| 6     | Input return    |
| 7     | Output return   |
| 8     | Output return   |
| 9     | Output return   |
| 10    | Positive output |
| 11    | Positive output |
| 12    | Positive output |

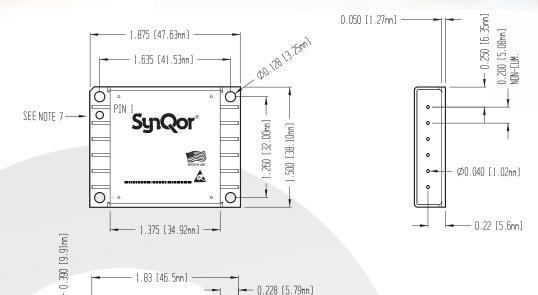




## **Case W**

## **NOTES**

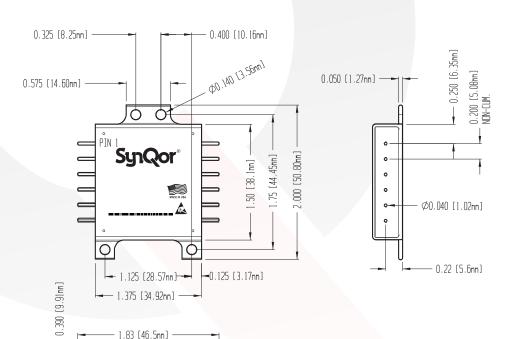
- Case: Aluminum with gold over nickel plate finish for the C-, ES-, and HB-Grade products.
- 2) Pins: Diameter: 0.040" (1.02mm)


  Material: Copper

  Finish: Gold over Nickel plate,
  - followed by Sn/Pb dip
- 3) All dimensions in inches (mm)
  - Tolerances: a) x.xx +/-0.02 in. (x.x +/-0.5mm)
    - b) x.xxx +/-0.010 in. (x.xx +/-0.25mm)
  - Weight: 1.6 oz (45.4 g) typical
- 6) Workmanship: Meets or exceeds IPC-A-610C Class III
- 7) Pin 1 identification hole, not intended for mounting



# **MQHE-270-P**


**Current: 1.0A** 



## PIN DESIGNATIONS

| Pin # | Function        |
|-------|-----------------|
| 1     | Positive input  |
| 2     | Positive input  |
| 3     | Positive input  |
| 4     | Input return    |
| 5     | Input return    |
| 6     | Input return    |
| 7     | Output return   |
| 8     | Output return   |
| 9     | Output return   |
| 10    | Positive output |
| 11    | Positive output |
| 12    | Positive output |

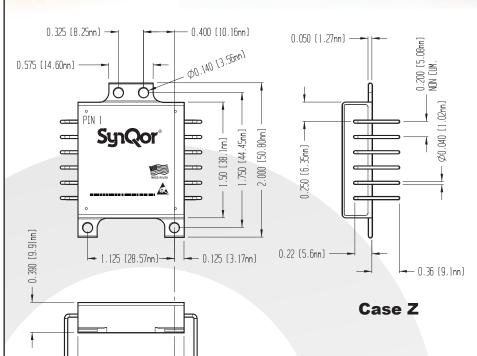
Case X



0.228 [5.79nn]

## **NOTES**

- Case: Aluminum with gold over nickel plate finish for the C-, ES-, and HB-Grade products.
- Diameter: 0.040" (1.02mm) 2) Pins: Material: Copper Finish: Gold over Nickel plate,
  - followed by Sn/Pb dip
- 3) All dimensions in inches (mm) 4) Tolerances: a) x.xx +/-0.02 in.
  - (x.x + /-0.5mm)b) x.xxx +/-0.010 in. (x.xx +/-0.25mm)
- 5) Weight: 1.6 oz (45.4 g) typical
- Workmanship: Meets or exceeds 6) IPC-A-610C Class III
- Pin 1 identification hole, not intended 7) for mounting


Case Y



0.28 [7.1mm] -1.375 [34.92mm] 1.68 [42.7nn]

**MQHE-270-P** 

Current: 1.0A



## PIN DESIGNATIONS

| Pin # | Function        |
|-------|-----------------|
| 1     | Positive input  |
| 2     | Positive input  |
| 3     | Positive input  |
| 4     | Input return    |
| 5     | Input return    |
| 6     | Input return    |
| 7     | Output return   |
| 8     | Output return   |
| 9     | Output return   |
| 10    | Positive output |
| 11    | Positive output |
| 12    | Positive output |

## **NOTES**

- Case: Aluminum with gold over
  - nickel plate finish for the C-,  $\dot{\text{ES-}}$  , and HB-Grade products.
- Diameter: 0.040" (1.02mm) 2) Pins:
  - Material: Copper
  - Finish: Gold over Nickel plate,
- followed by Sn/Pb dip All dimensions in inches (mm) 3)
- Tolerances: a) x.xx +/-0.02 in. 4)
  - (x.x + /-0.5mm)b) x.xxx +/-0.010 in.
  - (x.xx + /-0.25mm)
- 5) Weight: 1.6 oz (45.4 g) typical
- 6) Workmanship: Meets or exceeds IPC-A-610C Class III
- Pin 1 identification hole, not intended 7) for mounting

## MilQor Filter FAMILY MATRIX

The tables below show the array of MilQor filters available. When ordering SynQor converters, please ensure that you use the complete part number according to the table in the last page. Contact the factory for other requirements.

|                              |                             | Power             | Version           | Features Available (In Addition to Passive Filter Components) |                                       |                         |                                                |
|------------------------------|-----------------------------|-------------------|-------------------|---------------------------------------------------------------|---------------------------------------|-------------------------|------------------------------------------------|
| Product Family<br>Designator | Continuous<br>Input Voltage | (Amperage) Rating | (see table below) | Enable Pass-<br>Through<br>Circuitry                          | Transient<br>Suppression<br>Circuitry | Soft-Start<br>Circuitry | Reverse<br>Polarity<br>Protection<br>Circuitry |
| MQME-28                      | 40V                         |                   | Р                 |                                                               |                                       |                         |                                                |
| MOME OOF                     | 70V 320W (20)               | 320W (20A)        | Т                 | •                                                             | •                                     | •                       | •                                              |
| MQME-28E                     |                             |                   | Т6                | •                                                             | •                                     | •                       | •                                              |
| MQHE-28                      | 40V                         | 40004 (404)       | Б                 |                                                               |                                       |                         |                                                |
| MQHE-28E                     | 70V                         | 160W (10A)        | Р                 |                                                               |                                       |                         |                                                |
| MQHE-270                     | 400V                        | 160W (1A)         | Р                 |                                                               |                                       |                         |                                                |
| MOME 070                     | 400)/                       | 22014/ (24)       | Р                 |                                                               |                                       |                         |                                                |
| MQME-270                     | 400V                        | 320W (2A)         | R                 |                                                               |                                       |                         | •                                              |
| MQME-270L                    | 400V                        | 200W (3A)         | Р                 |                                                               |                                       |                         |                                                |
| IVIQIVIE-270L                | 4000                        | 200VV (3A)        | R                 |                                                               |                                       |                         | •                                              |

## **PART NUMBERING SYSTEM**

The part numbering system for SynQor's MilQor DC-DC converters follows the format shown in the table below.

| Model Name | Input Voltage Range | Version      | Package Outline/Pin<br>Configuration | Screening<br>Grade |
|------------|---------------------|--------------|--------------------------------------|--------------------|
| MQME       | 28<br>28E           | P<br>T<br>T6 | U<br>X<br>Y                          | C<br>ES            |
| MQHE       | 270<br>270L         | P<br>R       | w<br>z                               | НВ                 |

Not all combinations make valid part numbers, please contact SynQor for availability. See the Product Summary web page for more options.

**Example: MQHE-270-P-Y-ES** 

## **APPLICATION NOTES**

A variety of application notes and technical white papers can be downloaded in pdf format from the SynQor website.

## **Contact SynQor for further information and to order:**

Phone: 978-849-0600 Toll Free: 888-567-9596 Fax: 978-849-0602 E-mail: power@synqor.com Web: www.synqor.com
Address: 155 Swanson Road, Boxborough, MA 01719 USA

### WARRANTY

SynQor offers a two (2) year limited warranty. Complete warranty information is listed on our website or is available upon request from SynQor.

## **PATENTS**

SynQor holds numerous U.S. patents, one or more of which apply to most of its power conversion products. Any that apply to the product(s) listed in this document are identified by markings on the product(s) or on internal components of the product(s) in accordance with U.S. patent laws. SynQor's patents include the following:

6,896,526 6,927,987 7,050,309 7,085,146 7,765,687 7,787,261 8,149,597 8,644,027